Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
نویسندگان
چکیده
The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.
منابع مشابه
Deoxycholic acid differentially regulates focal adhesion kinase phosphorylation: role of tyrosine phosphatase ShP2.
Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of ...
متن کاملThe tyrosine phosphatase SHP2 regulates Sertoli cell junction complexes.
The blood-testis barrier (BTB) is a large junctional complex composed of tight junctions, adherens junctions, and gap junctions between adjacent Sertoli cells in the seminiferous tubules of the testis. Maintenance of the BTB as well as the controlled disruption and reformation of the barrier is essential for spermatogenesis and male fertility. Tyrosine phosphorylation of BTB proteins is known t...
متن کاملβ4 integrin activates a Shp2–Src signaling pathway that sustains HGF-induced anchorage-independent growth
Despite being a cell-matrix adhesion molecule, beta4 integrin can prompt the multiplication of neoplastic cells dislodged from their substrates (anchorage-independent growth). However, the molecular events underlying this atypical behavior remain partly unexplored. We found that activation of the Met receptor for hepatocyte growth factor results in the tyrosine phosphorylation of beta4, which i...
متن کاملThe tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration.
The Src homology phosphotyrosyl phosphatase 2 (SHP2) is a positive effector of receptor tyrosine kinases (RTK) signaling. Furthermore, SHP2 is known to promote cell migration and invasiveness, key steps in cancer metastasis. To date, however, the mechanism by which SHP2 regulates cell movement is not fully understood. In the current report, a new role for SHP2 in regulating cell migration has b...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2008